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Abstract

This report consists of three parts. In Part 1,
the elkonal and continulty equations are derived for
a sound wave propegating through a fluid in which
there 1s shear motion of low Mach number and scale
large compared to the sound wave length. On the basis
of a comparison between the elkonal equation and the
Hamilton-Jacobi equation for a charged particle in a
magnetic field 1t is shown that the acoustic ray paths
are ldentical with the trajectories of the particles
if the magnetic field 1is proportional to the vorticity.

In Part 2, the attenuation and fluctusdgtion in
intensity of a sound beam scattered in a turbulent med-
lum are expressed in terms of correldation products of
the turbulent flow. Expressions are also derived for
the phase and intensity fluctuations associated with the
propagation of sound through large scale turbulence, as
discussed in Part 1.

In Part 3, the differential cross section for
scattering of sound by turbulence 1s developed in a form
sulted to treatment of anisotropic turbulence. A simple
anisotropic distribution involving symmetry about a pre=-
ferred vorticity axis is discussed.
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Notatlion

Both vector and tensor notations are employed
according to convenlence, Vectors are indicated by
a wavy underline. Repeated tensor indices are to be
summed, Sub- or superscripts in parentheses are not
tensor indices, The anticommuting symbol €ue: (x,gT=1/2,3)
has the value one for o«=/, =2, t=32 , 1s antisymmetric
to permutation of any psir of indices, and vanishes 1if
two indices are equal. In terms of this symbol the

eross product of the vectors A, and By 13 Co = €n. 1A 5.

Symbols of the form ¢’X 1indicate integration over
three dimensional space. The symbol d°n indicates in-
tegration over all angles.

2
Space derivatives such as 9f/ax ", 3f/ax™Ix”  gne
frequently denoted by f,« and Hu«e respectively.



On the Propagation of 3ound
in a Turbulent Fluid

Part 1. Propagation of Sound through Large Scale Turbulence

1.1 When a sound wave propagates through a fluid in shear
motion, energy 1s scattered out of the beam: if the spatial
power spectrum of the shear motion, or turbulence, has apprecil-
able strength at wave numbers which are the same order of size
as that of the sound wave, When the dominant eddy size in the
shear flow 1s considerably larger than the sound wave length such
scattering becomes very small, but there remalins a coherent type
of perturbation which results in gradual distortion of the wave
fronts wlthout loss of energy. This distortion can be described
by a WKB type approximation procedure which ylelds an eikonal
equation determining the phase fronts and a continuity equation
describing the amplitude fluctuations associated with the phase
distortion.

In the presence of a shear wvelocity field of low Mach
number the wave equation for sound propagation has the form

mp=aifovip = 2R Ll (1.1)
where P 1s the excess pressure, P, the mean pressure, W the
longitudinal or sound velocity obeying

Uy, o~ Uga =0 (1.2)
and w the shear or transverse velocity obeying
Wa g =0 (1.3)

The velocity of sound in the undisturbed medium is.c.

(1) Xraichnan, Robert H., J.A.S.A.25 1096 (1953)

(2) Lighthill, M. J., Proc. Roy. Soc. A211l 56l (1952),
Proc. Camb, Phil, Soc. 9 531 (1953)



In the absence of the shear velocity w, the pressure
and velocity for a weak plane sound wave of arbitrary form may
be taken as

P=Pe Af (t—hnyx™) Ug = ¢ ANy £ (=N x*) (1.h)

where A is a dimensionless constant which we shall call the amp-
litude. We now try to satisfy (l.1), under the assumption that
the Mach number of the shear flow is smell and that w varies but
little in a sound wavelength, by replacing A with the space
function A(%) and n«x* with the function 8(x). The usefulness
of this approach is that because w varies slowly, the varlations
in A and ¥ from their unperturbed forms will also be slow.

By maeking use of the divergence and curl conditions
(1.3) and (1l.2), the right side of (l.1) may be written

3_6: az(un(\'\/g)

_ 2 P
az Ix*XIx - _Ei‘ (W“VIMN""M?';/?W"‘J,@)

Since, because of the low Mach number associated with w, this term
is a small perturbation, we may replace V't by the unperturbed
value ¢ 23*uU./C2)* within the limits of the approximations to
which (1.1) is valid.

We shall now substitute into (l.1) the functions
P =P A (2-8(x)) U= ARG F(2-80(x)) (1.5)
where Y,« stands for 2¥/ox* . The result is
Af" =9, 0u Af '+ fA+ 2 A, F ' = V3AF (1.6)
= 2¢7 [Wa B LAF"+ We o (QapAf -8, Ly AF '+ O Ayt )]

where the prime denotes differentiation with respect to the
argument. The quantities A, ,Yus, wa,wy,, are small quantities
in this equation according to the assumption of slow variation
of the shear velocity. Hence, neglecting terms bilinear in these
quantities we obtain the approximate equation

Af"- Q,‘ 0,¢Af“+ V‘&f 'A + ZA,.HQ,@( fF'l= ZC-'[WctQJu Af“" Wq,‘lg,,,( lg,Af,J (1.7)



We have also neglected the term in VA, which will be small
compared to A,« . Since f 1is & quite arbitrary function, the
coefficients of ' and f' must be independently zero; we
therefore obtain the two equations

Gully +237 ' W, uWa =1 =0 (1.8)
2A,084 +AVE = =289 oW s A (1.9)

The first of these relations 1s an eikonal equation determining
the phase as a function of space. Rewriting the second in the
form

(Jlog A*), y ¥ u + T2 + 2¢7' 8, « Y eWu, g = 0 (1.10)

it is seen to be a continuity equation relating square of amp-
litude to phase., Eq. (1.10) shows that the variations in amp-
litude arise from two causes: focusing effects associated with
the curvature of the wavefronts; and the necessity for mesinten=-
ance of constant energy flow through regions in which the local
veloclty of propagatlion varies in the direction of propagation.

1.2 In this sectlon it will be shown that the effect on the
propagatlon of sound rays of large eddy size turbulence, or, in
general, shear motlon which varles but 1little in the space at a
sound wave length, bears a direct analogy to the effect of mag-
netic fields on the paths of charged particles., Since the latter
has been extensively studied in connection with flelds such as
cosmlic ray research and particle accelerator design, the analogy
possibly could be a valuable tool in visualizing sound propagation
phenomena. The analogy 1s based on a similarity between the
eikonal equation for sound waves in a slowly moving medium and
the Hamilton-Jacobl equation for the motion of charged particles
in a magnetlic field.

Conslider a particle whose motion 1s determined by the
Hamilton equations

oH _
F oo 28 . _ _2H
9= 3P Pe= T 39a (1.11)

where Qu 1s the position vector of the papticle, éu the time rate
of change of this vector. The Hamiltonian H and momenta Y« are



related to a time-independent Lagrangian function L (gu,da) by

Pa=9L /39, H(Psgy9)= EPugu— L (1.12)

The posslble motions of such a particle corresponding
to a total energ; E may then be found, according to the Hamilton-
Jacobl procedure’, by solving for S the equation

H(3g 90 = & (1.13)

in which 95/29« replaces p« wherever it appears in the Hamiltonian.

The paths along which the particles of energy E travel
may be described very simply in terms of t function 8. Accord-
ing to Hamilton's princliple of least actlion* the particle paths
determined by (1.13) are those for which the action integral

t(z;

A= j %)O_“Cj“hf (1.1)

t(‘)

is extremal (maximum or minimum) between two arbitrary fixed end
points ¢7 and 9 Regarding the time as a parameter along the
path, we may write Judt = dqq 80 that, substituting 25/29« for
P., the extremal condition on (l.1ll}) may be expressed as

5] Jg, = (1.15)

If now a wave pattern were constructed such that S were every-
where proportional to the total phase of the waves, (1.15) would
determine those paths between the two fixed end points along

which the total change of phase would be extremal, It 1s therefore
8 statement of Fermat's principle, and the paths so defined are
simply the ray paths of the wave system as ordinarily understood.

We have therefore obtained the general result that the
ray paths of a wave system are lidentical with a family of trajec~
tories of particles obeying a Hamllton-Jacobl equation identical
with the eikonal equatlion for the waves. This fact, which is
the basis of the correspondence between classical and quantum
mechanicg, takes a simple and well known form in the case where
the Hamiltonian contains no velocity dependent forces. Then,

(3) See, e.g., Goldstein, "Classical Mechanics" Addison-Wesley,
Cambridge (1951)

(I,) See reference (3) above



the particle velocity q« 1s proportional to the canonical
momentum P« so that the ray paths are normal to the phase
fronts, 8 = constant, and the ray direction at any point 1is
the direction of the vector 9S8 /99. -

The Lagrangisn of a non-relativistic particle of

mass m and charge € in an electromagnetic field with vector
potential A.(9> and scalar potential v(g) is

L=mdudu + _e_j%_é_« — eV (1.16)
2

]

where ¢, is the velocity of light.,

The corresponding momenta and Hamiltonlian are

Pa = mGut+ £ AL
Hpa) = (Pa- %OA(;()I/Z'”’ +e\V _(1'17)
Accordingly the Hamilton-Jacobl equation 1is
g“z?s;” %A,()z/z»n +ev = E (1.18)

where E is the total energy of the particle.

The approximate eikonal equation for a sound wave
propagating in a medium undergoing shear flow was found to be

Wy + 2 ‘1-'\9,« Wy —1 =0 (1.8)

according to section 1.1 Here w¥/¢ is the total phase, @ is the
frequency, ¢ the velocity of sound in the still medium, and w,
the shear veloclty field obeying

We,u =0 (1.3)

Since (1.8) 1s accurate only to terms linear in wi, it may be
written to equally good approximation as

(@, + ¢ W) =/ (1.19)



which, it may be verified, differs from (1.8) by only the term
¢ wit

In this form, the similarity to the Hamilton~Jacobl
equation (1.,18) with V=0 is readily apparent. The similarity
is made more complete by the fact that the vector potential
obeys A«,«=0, when V=constant, in analogy to (l.3). The exact
identification between (1.18) and (1.19) may be shown by dividing
(1.18) by E, and noting that 2mE is simply the square of the
ordinary momentum of the particle, which we may denote by Pz,

In terms of this quantity (1.18) may be written

(S,u = ec'A)Y/ pro=1 (1.20)

which is identical with (l.19) if

S,a /P =19« — e ¢ AL /P = ¢ wi (1.21)

Thus, paths of sound rays in a fluid in which the local velocity

is w« are identical with the trajectories of partlcles of charge

e and momentum P moving in an electromagnetic field corresponding
to the vector potential A,=c,¢ 'Pw/a

Several limitations on the analogy must be kept in mind,
First we have assumed that the velocity fileld W« changes but 1little
in a distance of a sound wavelength, and is small compared to c.
Secondly we have not as yet included the effects of time variation
of Wa 3 our discussion of the Hamilton-Jacobl equation was based
on the assumption of time-independent potentlals, Actually, the
requirements of large eddy size and small Mach number lmply that
the time-variations in wa will be very slow Iindeed compared to
those of the sound wave and except for speclal cases they will
not result in significant departure from the time independent
equatlons.

The magnetic field corresponding to the vector potential
in (1.21) 1is

or eH /P = -¢¥ (1.22)

where ¥ is the vorticity assoclated withw. Hence the results
of this section may be summed up by saying that, within the
limitations noted above, the ray paths of a sound wave in a



moving fluid follow the trajectorles of charged particles in

& magnetic fleld everywhere proportional to and in the opposite
direction from the vorticity vector, the proportionality con-
stant being determiged in terms of the (arbiltrary) varticle
momentun by (l.22).

It was noted above that every turbulent velocity field
W corresponds to & possible magnetic fleld in free space, and
the converse 1s also klnetically possible., Hence, the propaga-
tion of sound in a moving atmosphere should exhibit all the
foeussing effects, shadow effects, and other phenomena encountered
with particles travelllng in magnetic fields. It would be of
interest to examine to what extent the analogy holds true when
eddy sizes the order of a wavelength or smaller are involved.
This would correspond, 1f the analogy held, to the quantum
mechanics of charged particles in magnetic filelds. Also of in-
terest 1s the question of whether such time-dependent phenomena
as the betatron acceleration mechanism have counterparts in the
sound propagation case. To investigate this 1t 1s necessary to
extend the treatment above to include time dependent potentials.,
There could possibly result an analogy between the ray paths for
the time dependent case and the trajectories of the l-dimensional
Hemilton-Jacobl equation for a relativistic particle.

Part 2. Attenuation and Intensity Fluctuations

2.1 When a sound wave propagates through a turbulent fluid
medium, the local intensity of the wave 1is altered both by
scattering of energy,out of the beam, as discussed by the sauthor
in 8 previous paper,1 and by distortion of the shape of the wave-
fronts by large scale shear flow as indlcated in the prevlous
section. In thils section, the intensity varliations to be ex-
pected from both effects will be expressed in terms of the
statistical correlation products associated with the turbulence.
The cslculations will be confined to ceses in which the character-
1stic time periods of the turbulence are very large compared to
the period of the sound wave; thls represents a reallstic re-
striction for the discussion of sound propagation in the atmosphere
or sea, where very small Mach numbers are ordinarily encountered.

In reference (1) expressions were derived for the
differential scattering cross-section for sound waves traversing
a region in turbulent motion, It follows from the analysis
developed there that when the liach number of the turbulence is

(5) Note that there is no direct relation between the speed
of propagation of the rays and the speed of the par%IcIes.
Only the spatial forms of the paths are compared. -



small, the frequency spectrum of the differential scattering
cross-section 1s given by

() (2 — 7\'6«)4 Luy () 2 (3 m;n‘"—h""j 2
Ithiniw) = 7 (nn”) {n’.’\,'_\_/< —= :m;-m.)

~

(2.1)

Here ¢ is the veloclity of sound,zf a unit vector in the direc-
tion of the incident sound wave, N¥a unit vector in a direction
of sgcattering, w. the frequency of the incident sound-wave, and
W (&w) the ll~dimensional Fourier transform of the turbulent
veloclty rield. I(n)pn%w) 1s related to the differential scatter-

-~ )

ing cross-section by

0y ()

o©
con =3[ 1™ wyde (2.2)
)

where T 1s the period of time over which the time Fourier analysis
is performed.

The princlpal effects on the scattering of the time
variation of the turbulence as reflected in the li-dimensional
transform W(g«) are first, a slight broadening in frequency of
the scattered wave, and second, an effect on the amount of
scattering at very small angles in radlans of the order of mag-
nitude of the ratio of the characteristic frequencies of the
turbulence to w.. These effects will have a negliglble 1nfluence
on the attenuatlion of a sound beam, which depends on the total
cross-sectlon and hence we shall express the scattering cross-
section in the time 1ndependent form

) RO

' ! 2
fc,ﬂ(:ﬂm) — é_‘_\:k:(nn{ncz,))zln -&:/(le.[h_v “n 3), (2.3)

o~

where R.=%/¢ and W(k) the 3-dimensional Fourier transform of
the shear velocity 1s defined by

- a'ﬁ.ﬁ

-2 3
\/;/CB) = (2n) ’fy_«c;c_)e . (2.4)

Equation (2.3) can be derived by performing the analysis of
reference (1) under the initial assumption that the shear veloc~
ity is independent of time., In using this expression to calculate
the attenuation of a sound wave over long distances, it 1s assumed,
of course, that the turbulence is statistically stationary over
the regions and times involved.



The scattering cross-section as it appears in (2.3)
may be expressed readily 1n terms of the correlation products
usually employed in describing turbulence. HRewriting the ex-
pression in W(k),

() (12 (2) 2y ¥ ¢ u
enin®y = & RN N e W RN N 1) W (kLA™ 0" 1)

(2.5)

If the correlatlon tensor of the turbulence is denoted by

Fup CA) = Wa (X)W, Cx+A) (2.6)

where the overbar indicates averaging over a suitable region
of space, the Fourier transform of t..,

-2 -2k
Tae (£)= 2077 [2 ) e 2247 (2.7)

~—~

differs from wa(R)weCk) only in that it is normalized by the
total volume of turbulence considered. Hence, the scattering
cross-section per average cublc centimeter of turbulence will
be

-, . N 4, (i @2 2) ) 2)
FLNT) = Gk n )TN N To, (k. LRT- A" )) (2.8)

The total scattering cross-section is found by in-
tegrating (2.8) over all scattering directions n*:

o~

- (V] n 4 y ) (27 (&3
Tn™y =E RS (et p RN Tttt DY (2,9)

If the initial intensity of the beam of sound is I,, the mean
intensity after traversing a distance y will be

-— {1y
- -FCch )
I = I,e y (2010)

Formula (2.,10) will describe the attenuatlon correctly
only if y 18 greater than the distance over which there exists
appreciable correlation among the eddy sizes (wave-numbers)
contributing to the scattering. Within shorter distances, there
will be coherence and interference between the waves scattered
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from different points. The restriction to distances longer
than the correlation length is implicit in (2.9) because the
space averaging involved in the correlation tensor f.,(2) 1is
customarily carried out, in the case of extended turbulence,
over reglions large compared with the values of A of interest.

The Mach number of the turbulence encountered in the
atmosphers, the extended medium of principal interest, is
sufficiently low that the amount of attenuation in a distance
the order of several correlation lengths may be expected to be
quite small., In this case, the relative fluctuations to be
expected in the attenuation will be very nearly averaged out
in a distance of transmission long enough to result in sig-
nificant weakening of the sound beam. An estimate of the
intensity fluctuations may be obtained as follows, Let the
linear distance over which the space averaging in (2.6) has
been carried out be L. Then the mean scattering cross-section
of a reglon of the turbulence one centimeter square and ex-
tending a distance L in the direction of propagation will be
LFc¢n")e The fluctuations from the mean in the scattering from
this region will then be given by L & o (n”) where

My X 4 () @ 2 () (u
accn") =gk 0"l AT, (R, [n*n®3)d’n” (2.11)

The corresponding mean-square fluctuatlon is

1, o2 ___7£ & M (2 2 o [+ TR ¢
([AG‘CQ 1> = a3 R, fj(__ ‘nY) (ﬂ l'D_m’)zh“,,h:hﬁ'h‘:”

XCATos Cloo L™ 1™1) ATy Ca L™= p 323 407407 (2,12)

where the averaging is over a repregentative distribution of
regions of linear size L,

If the fluctuations in o are taken into account, the
intensity after traversing a distance y will be

-ECh"’)y—fyaa'cn“’)dy
=TI e = ° -
== (2.13)

Hence, the mean-square fluctuation in the logarithmic decrement
of the intensity will be

{lateg 220> = (Lo cn® ay)*) (2.14)
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It has been assumed that correlation in the turbulence 1s
negligible outside the distance L., Hence if y 1s considerably
larger than L we may expect that the total fluctuation appearing
in (2.1&) is the result of random addition of fluctuations from

y/L 1ndependent reglons. According to a well-known law we
should then have
I ) :
{(atog L) ~ ()[4 ™)1 (2.15)

so that the ratioc of the fluctuation in logarithmic decrement
to the mean decrement 1is

4
VLA 1oy (L1132 fMog (2, 113) ~(5) YK (6™ /& cn ™) (2.16)

It is apparent from (2.12) that the calculation of the
fluctuation {rascn?3?) requires a knowledge of the fourth order
correlation product

Sugr CRRD = K 3Tap CRYAT s (2D (2.17)

which may be expressed in terms of velocity correlation products
by the use of (2.7) and {2.6)., The evaluation of such fourth
order correlation functions is difficult with existing theoretical
and empirical knowledge of turbulence.

2.2 As shown 1n section 1.1 the phase of a sound wave propa-
gating in a fluid in which there is low Mach number turbulence,
the scale of which 1is large compared to the sound wavelength,
becomeg distorted according to the eikonal equation

8Btz B~ | = 0 (1.8)

where, if «w 1s the frequency of the sound wave,wﬁ/d 1s the total
phase, The shear veloclty fleld is wu, If the unperturbed

sound 1s a plane wave propagating in the direction of the unit
vector n, the unperturbed phase will be $“ =n-x 8o that,
writing @ = 4+9« , the eikonal equation may be written

2NiBu + & o b +2¢7 (Newe + By )= 6 (2.18)

If the distortion 1s gradual, corresponding to the assumption of
low Mach number, ¢ will vary quite slowly as a function of space
and hence the terms &« ¥ « and #.w. will be small compared to



12

the other terms in (2.18). Therefore, the phase distortion
will be determined to a first approximation by the equation

Nu @, « + e Ny Wa =0

(2.,19)

If the value of the phase is given on some wavefront by, say,
$ =0, then according to (2.19) the phase further along the
direction of propagation will be given by

°
nl

x4
-t [T
B(x+lpy =-¢ /xo Wew CE) d C2-0) (2.20)

where X’ is a point on the initial wavefront, WemC(X) 1s the
component of w in the direction of N and the line integral 1is
over a length L. along the direction of n. Although (2.19) is
approximately correct everywhere in the region of shear motion,
it must be noted that the integrated form (2.20) will be correct
orily when the change of dlirectlion of the wavefronts indlcated
by #¢x> 13 small; 1i.,e., the error introduced in passing from
(2.18) to (2.19) is essentially that the initial direction of
propagation n, appears in (2.20) instead of the local direction,
which 1s the resultant of the initial direction and the total
distortion which has occurred up to the point of interest,

According to (2.20) the mean square phase deviation at
the polnt x =x°+nL 1s

x rX
LdesTD = 7 [, Dy ()2 d e md C2%0) (2421)

where the averaging 1s over a statistically representative
ensemble of shear flow systems so as to provide a valid measure
of the phase distortion in the turbulent flow. The quantity
{Wemy (¢ 0Weny €x”) 18 just a diagonal component of the two point
correlation tensor {wucx) wecx"?. If the statistics of the
turbulence are spatially homogeneous,~ this tensor is a function
of x'-x" only and reduces to the single argument correlation
tensor defined by (2.6). In this case (2.21) reduces to

Fx o %
Iy . ~ - ’ P ’ 2
{Lg01™) = );ojz- Nulstue (x-x">d (x-n)dx"nd (2.22)

(6) This does not imply isotropy.
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This expression is easily reduced to single integrals, If

we imagine a plane of integration in which y=x'-n and 2=x"n
are perpendicular carteslan coordinates, the integration in
(2.22) 1s over a square of sidel , oriented with the y and =
axes. It 1ls readily seen by drawing the dlagonal lines

y~2=A that the weight wilth which the value A occurs in the
square is L-IA). Since A ranges from L to-L and since
NuNoteg (A ) = Nunaetaec-3) the integral in (2.22) may be re-
written

. - L
<[¢C}_°+LQ)J> = Zdzh&nﬁ‘fo ‘é.‘ﬂ (}\Q)(L_-A)JA (2.23)

where we have noted in writing #ue(>n) that the integration
is along n.

When the distance of propagation L is considerably
longer than the maximum distance over which there exists
correlation in the turbulence, f.us (An) will be negli%ible for
values of )\ greater than L and hence, for thls case,

) - b o -
C&% Lno)D ~2¢7nen, (L [t 00nr 4 = [ tencanyndd) (2.24)

Under the assumption that L. is large, the second term will be
small relative to the first and hence the plausible result

that the root-mean~square phase deviation varies as v, and as
a quantity assoclated with the mean velocity fluctuatlion length
and magnitude.

According to sectlon l.l the local iIntenslty of the
distorted wave (more accurately, the square of the amplitude)
1s related to the phase deviatlion by the continuity equation

G = —VE — 2¢~"18,, Y o W, o (1.9)

where € 1s the logarithm of the intensity. Under the approxima-
tion employed in deriving the phase deviation we may replace
(1.9) by the approximate form

€uNu == V'8 — 2¢7 Ny hy W, e (2.25)

(7) A similar derivation was carried out for a specific model
of turbulent flow by Blockintzev: "Acoustics of an
Inhomogeneous Moving ledium." Translation by R. T. Beyer
and D, Mintzer under RAG Contract N7-ONR-35808 (August 1952)
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so that, following the analysis just given,

x+Lp

€lxriny=- [Vidcxy+2¢ " ' Dune W, 218 (x-n) (2.26)

b d

will represent the approximate logarithmic interisity increment
after propagating a distance L into the moving medium. Writing
out V* in the form 3°Ax)*+ 2%/Cax;)* +23*/Ca%;)? where N lies
along the %; axis, and using expression (2.20) for ¢cx),

) x : K
2 - “ Py 9 o 'ol aW: CE)
vidiex ¢ fg_, [(ax,>= +(ax,)"]W3(?£) dxy— ¢ 2 X, (2.27)
Hence,
5"‘"L-’lai >t
ecz°+Ln>=’f S T | Bk )y — W OB LRI~ Wy e
o 5% Gox | €2 ) = (2,28)

The term (wzCx™tLn)—W,;¢x")/¢ depends only upon variations, in
the direction of propagation, of w;, the component of shear
velocity in the direction of propagation. 1Its physical sig-

to maintain a constant transfer of energy as the veloclty of
propagation along a line of propagation varies according to w;c(x)
It 1s apparent that this term is of a fluctuating nature, and

in view of the spatlal homogenelty of the turbulence which we
have assumed, 1t will not make any cumilative contribution to
€(x°+Ln), and will not be considered further.

The first term, involving derivatives with respect to
*, and x,, repregents changes in local intensity due to fluc-
tuations 1n the spacing of ray paths as a result of the curvature
of the phase fronts. In fact, 3*°8/(ax,)*+3*¢ /x> gives Just
the local curvature of a phase front. This type of intensity
fluctuation may be regarded as the resultant of a series of
locallized focusing and defocusing actions. Let the integral in
(2.28) be denoted by €;¢x> . Then, if we employ the notation

2 —
L3%/Car, '+ /Cox T Flx) = £8¢x) (2.29)

for compactness,

X.
{L& x%Ln1> = f"*
xﬂ

A~

th p x%Ln
x.

K o gTex)ixndxy  (2.30)
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(2.30)

represents the mean square intensity fluctuation due to wave
front curvature. Using(2.20),

T r , o X r/ p4
{#7 ey Pex »=¢e ’fzsfz: w, cﬁ)wjl’(zs'pax, I, (2.31)

Writing

piof
Awy cxow,Bexsd = ¢* Fax-x (2.32)

we note that this correlation product can depend only on the
difference of the two coordinate polnts in the case of homogen-
gous turbulence; then,

Z ¢
{FZce>dTexs>= [ [,zv‘ﬁfzs’wxdx ’ (2.33)

where y=x-%° ¥'=x-x° | and the variables of integration have
been transformed to give more convenient limits, The integral
in (2.33) is similar to that in (2.22) except that the area of
integration is a rectangle in this case lnstead of a square,
Using a geometrical construction similar in principle to that
employed in the evaluation of (2.22), one finds, with some
manipulation,

y ?
Py 85y )y = F AnyCy-2)3+ [ £ an)y ) d)
—‘fy-y}o\nﬂwy'-l"“
[

It will be noted that thls expression 1s symmetric iny
and y'. Denoting it by ¢(y,y’) ,

(2.34)

L
(Cer x*+Lndz?D> =f"f° GCy,y)dydy’ (2.35)

As in the case of the phase deviation, this expression for the
intensity fluctuations 1In terms of integrals over second order
velocity derivative correlation products can be simplified when
the propagation distance L 1is much longer than distances over
which there exists correlation in the turbulence. For such long
distances, following the argument used 1in obtaining the approxi-
mation (2.24),

os of
G Y,y )~ CyryD [ FOanydr = Vy=y'l [ Fean)dx (2436)
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Approximately correé¢t results will be obtained by substituting
this asymptotic form for G(¥,y') into (2.35). The reason 1is
that since G(v,y’') grows withy and Y/, the contribution to
(2.35) from values so small that (2.36)is not valid will be
minor. Hence setting

F=["F(nydA (2.37)

we have

L
Uer Cevepd ™y ~ F [ Ly = 1y=y 1] dydy ! (2.38)

Considering this as an integral over a square of side L, it may
be handled as were the previous cases, except that for evalua=
tion of the term in y+y’, the weighting of the lines y+y’s) will
be L~jL-2}, and A will range from 0 to 2L . Then,

3

foL[ , , J . Fi s L 2
| Loy iy ildydy =f°>\(L~IL-ADJa\—2f°?\(l—“\)dk~ O (2.39)
Hence,

(L€ Cx+Ln)T> ~ 2L°F (2.40)

where F 1s defined in terms of the quadratic correlation of the
velocity derivatives by (2.37), (2.32), (2.29). Thug the root-
mean-square intensity fluctuation will increase as 7 The rapid
increase of the intensity fluctuatlons relative to the phase
deviation is due to the fact that the fluctuation at distance 1is
the cumulative résult of wavefront curvature along the entire
path of propagation as well as at the point L,

part 3, Scattering by Anisotroplc Turbulence

In a previous paper1 an expllcit expression was derived
for the scattering of sound in a reglon contalning isotropic
turbulence of arbitrary spectrum shape, In this section, the
effects of anlstropy on the scattering are discussed.

3.1 In most physical examples of turbulence, there is a
significant degree of anisotropy because the mechanlsm by which
enercy 1s supplied to the turbulence tends to produce vorticity
in certain preferred directions. In the process of transfer of
the energy from large eddies to small the anistropy becomes
obscured gradually, and near the upper limit of the turbulence
spectrum there is usually a high degree of isotropy. In terms
of spatial distribution, it may be expected that the maximum
anistropy exist near the vorticity producing boundaries while
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as the vorticity diffuses away from the boundary, the anisotropy
bacome obscured. This is true, for example, in the case of at-
mospheric turbulence resulting from vortlicity produced at tae
{sround,

In speaking of the isotropy or anisotropy of the turbulence
In a region of fluid we refer not to the instantaneous character
of the flow but to gtatistical propertiess which are defined as
averages over either a long period of time, or, as is »ractically
equlivalent in this case, a very large volume of fluid containing
many such regions as we are examining. Alternatively, the statis-
tical characteristics may be expressed as averages over an ensemble
of flow system§ the engemble being so chosen as to represent the
fluctuations encountered in time averaging or large scale space
averaging. In what follows the ensemble average of a gquantity A
will ve denoted by {A).

Consider a shear motion for which the velocity is glven
by wa¢x #), The veloclty field may be described in terms of a
Fourier representation by

- wf (= Ry XD
W, CR,w) = (21) zjw,cx,t)o_‘ T gixdt (3.1)

The condition that the motion be a pure shear flow is

Wy (x) - o
2 x* - (32)

or

R Walk,w) =0 (3+3)

In the reference m.entioned,1 it was shown that when a
plane sound wave of frequency w, propagating in the direction of
the unit vector n® is scattered in a region of a fluld undergoing
such shear flow at low Mach number, the power spectrum of the
energy scattered per unit solid angle in the direction n® is given
by

Py (&3] (7}
nw (1 (2) 2 (2) lwih -~ wehn 2
I (hmp_“;)w) =% (n.n ) l rwa- o~ PAS ,u;—Wo)
] ( I3 3 , (3.l+)

I(n'n"w) 1s so normallized that the differential scattering cross-

goction is given by

o
(1) (2) __'f ()

olh ) n = I d
e (3.5)

P
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where T is the interval over which the time integration in
(3.1) is earried out,

In order to investigate the effects of anisotropy
on the scattering predicted by (3.&), it 1s convenient to
express the Fourier elements W, (k«) in terms of the vorticity.
The vorticity axial vector is defined by

VYo C2) = €4pp dWy (x,t3 /OX*

‘ . (3¢5)
Vo Clyo) =—2€,0R oW Ch, )

where the quantity €ou,e 1s antisymmetric to peﬁmutation of any
two indices and €,,;=/. From this 1t follows,” as a result of
(3.3), that

W,. CB,N) = 2'60'(,(/@/&-2/6,%(‘;_@_,‘”) (307)

substituting this exoression in (3.4),

) Nw®, @t (2 ( (
ICn now) = _.._.-(n Ny 1k 2) / (l)_ w) ,N,n")..n '/% 2
~d ) ) ¢é6 Y~ o~ ) l e"dﬁ r("‘-"hg “,Onn )‘(‘.C *Q* )'Wf°"’°>l

with k& = llein*~ wen™|

Because of the antisymetry of €sue in o and = the term in fejng®’
vanishes, leaving

Ww’%t

Mm@ = 2 ) o feo) () (] a
In,n",w) ce ok [er-w”r":a%(in‘a“%’g‘ﬂ“"w(B.B)
X Cleoin®- enn™) ™"

or, introducing the vector voloclity potential Ve (x,1) by
Wo Ch,w)= t€oupReVi (j, w) (3.9
Wi Cx,t) = CougdVulx tfox”
so that
Yo cx, 2=V Ve (2,T) Yo )= -RVe Gt (500,

(8) This is readily shown by multiplying (3.6) by Ra&do and using

the relation €,.x €oup = §2°53 - 52 5%

-1



(3.8) becomes

.2 ) )
M@y N w, A fwin —“ol —w,) |
I flw)= =g [€aia No gV, (—=——= 5 1=1-%) | (3.11)

This form, or (3+8) displays the angular behavicr of
the scattering more lmmedlately than the original expression
(3.4), and shows that n'*’and n® play symmetrical roles in the
scattering formula, The quantity in the straight brackets has
a very sinmple geometrlcal significance. It is equal{to the
volume of the parallelopided formed by the vectors N¥, n® and
Y. Thus the angular dependence, aside from the detailed struc-
ture of ¥, 1s thé combined result of two factors; first, the
quantity n" p* which favors secattering in forward and backward
directions while indicating zero 90° scattering, and second, the
parallelopided volume which 1s maximum when the angles between
the three vectors are right angles and hence indicetes zero
scattering at zero’ and 180°, and also in the case when either
n" or f'1ies in the direction of the vorticity component for the
particular wave number involved. Thus in the case of a shear
flow in which there 1s a preferred direction of vorticlity it is
to be expected that the total scattering will be maximum when
the direction of the Incident wave 1s normal to the vorticity
direction and that the scattered radistion will be most intense
in or near the vplane normal to the vorticlty. Thils speeciflec
angular behavior would be superimposed on the angular dependence
associated with isotropic turbulence.

Both the vorticity¥ and the veloclty potentiall/ have
vanishing divergence if the veloclty fleld itself 1s to be
divergenceless, However, the divergenceless character of w as
defined in (3.9) 1s independent of any condition onyY. Hence,
(3.11) will describe the scattering from some possible incom-
pressible flow, irrespective of whether or not ¥ is divergence-
less, In the latter case, however, the vorticlty 1s not related
toV in the simple fashion indicated in (3.10).

The advantage of describing the shear velocity field by
the inherently divergenceless expression (3.9) is that one need
not impose explicitly on the statistical ensembles describing
turbulent flows the condition (3.3) that the velocity vector and
wave vector be perpendicular. As an example, for which no ob=
servational velidity 1s claimed, we shall examine the scattering
from a velocity distribution which describes a particular type of
hypothetical turbulence with a preferred axis of vorticlty and
which leads to especlally simple expressions. Consider the

(9) Strictly speaking, 1t cannot be lmmediately concluded that
the scattering at zero degrees vanishes without ascertalning
the behavior of V (k,») for very small k&, It 1s apparent,
however, as was pointed out in reference (1), that the
frequency spectrum of the radiation in the forward directlon
must be very sharp.
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velocity spectrum
WG' (.k./ W):: eo—‘p kd h;")(‘&lw) #C_g‘,"!) (3.12)

{o)

in vhich #”1is a unit vector., For a fixed, constant N, this
spectrum describes motlon confined to directions lying in
the plane perpendicular ton® If it is assumed that the en-
semble distribution of n”is independent of K, and that the
anisotropy of the turbulence is completely described by the
distribution of 1%} i.e., if <{IfCk,«))>> depends only on k?*, «
and f(&w i3 uncorrelated with n°, the ensemble average of the
scattering will be given by

w"

d

(v _ “"ol ) (2) > () ) (o lu]n(ziw,n'”
@Q5n,wps =5 (0 n) (e, ny 1, e | DF(I—=g—m-%) (3,13)

where F('kbw) = <"F(@W))l>

For this situation it 1s apparent that the dependence
of the scattering on the direction of the incident wave, h") 1is
entirely contalned in the factor {l€r«en@nrd’ NS> which is the
mean square volume of the parallelopiped bounded by the three
unit vectors. This quantity 1is easily calculated for & given
distribution of nN” around some preferred direction. In view of
the simplicity of this example it would be of interest to see
to what extent axlally symmetric turbulent flow occurring in
practice could be fitted to the distribution described. The
principal lack of generality in the axially symmetric distribu-
tions described by (3.12) with the specializations we have noted
is that a definite weighting is given to wave-vectors R according
to the angle they make with the axial direction n® as may be
evidenced by forming the energy-spectrum corresponding to (3.12):

\Wek e | = [ R* C-n>*I 1 fChywrl? (3.1l4)

This weighting, which favors wave-vectors lying in the preferred
plane of motion, is not an unreasonable one, a priori, but it
should be emphasized that no empirical validation of thils dis-
tribution is implied.



Aggendix

In the analysis of Section 2.2 there appeared
several integrals of the form

a b
I, =f° L G (x-yl)dxdy (A.1)

or

a Q i
1,= [ [ Heery)dxdy (4.2)

These expressions are readily converted to single integrals
by first finding the welght with which glven values of the
arguments A=Ix~y| or A=xt+y occur in the rectangular reglons
of integration. Consldering I, , first, it appears from
Figure 1 that in region II of the domaln of integration the
weirht corresponding to the argument value A 1s bdd, the

area of the parallelogrram of base dA and height b, 3imilarly,
negclecting areas of order (dX)*, the weichts approprlate to
rezions I and TII are (b-iA/)dA and (a-A)dA respectively. In
region I, Xl varies from o to b, in region II from o to a-b,
and in region III from a-b to a, Hence I,, expressed as the
sum of integrals over the three regions, is given by

I =[G At (6o :
= [eanba)d fcha)bJA-rj;“bG(,\) (a-A2d2 (4.3)
If we note that
1'b ﬂ'br d‘b
f GCA)bdA =:vf6{A)Ca*A)dA":f.GCA)(Q*b-A)dA (A.L)
° ° o .

this may be written in the fornm,

b a , a*- |
I, =f;> 'G—"CA)Cb-)«‘)d/\-FL G-C'A)'Ca'-,\)di\-fo G (M(a-b-2)d) (4,5)

This expression is symmetric in a and b (as is readily verified
for the last term) and hence 1s valid also for a<b, Whenas=b,

Q
I, = zfo G-CA)Ca-A)dA (A.6)

which agrees with the result of the derivation described in the
text for the integration over a square.

21
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Considering now the evaluation of Iy, it appears
from Figure 2 that in region I the weight corresponding to
the argument value x+y=2A 1s Add while in region II it is
(2a-2)dr , In region I A ranges from © to a and in region II,
from & to 2a, Hence, both these welghts can be expressed by
the single function (a-Ja-x1)dA . Then,

24
I,==4£ HCA) Ca=la=2])d A (A.7)

This method of evaluating I, can be extended to rectangular
domains of integration also.
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